Reservoir Geomechanics Book PDF, EPUB Download & Read Online Free

Reservoir Geomechanics
Author: Mark D. Zoback
Publisher: Cambridge University Press
ISBN: 0521146194
Pages: 449
Year: 2010-04-01
View: 481
Read: 797
Praise for Reservoir Geomechanics: --
Reservoir Geomechanics
Author: Mark D. Zoback
Publisher: Cambridge University Press
ISBN: 1107320089
Pages:
Year: 2010-04-01
View: 893
Read: 231
This interdisciplinary book encompasses the fields of rock mechanics, structural geology and petroleum engineering to address a wide range of geomechanical problems that arise during the exploitation of oil and gas reservoirs. It considers key practical issues such as prediction of pore pressure, estimation of hydrocarbon column heights and fault seal potential, determination of optimally stable well trajectories, casing set points and mud weights, changes in reservoir performance during depletion, and production-induced faulting and subsidence. The book establishes the basic principles involved before introducing practical measurement and experimental techniques to improve recovery and reduce exploitation costs. It illustrates their successful application through case studies taken from oil and gas fields around the world. This book is a practical reference for geoscientists and engineers in the petroleum and geothermal industries, and for research scientists interested in stress measurements and their application to problems of faulting and fluid flow in the crust.
Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology
Author: Herbert F. Wang
Publisher: Princeton University Press
ISBN: 140088568X
Pages: 304
Year: 2017-02-15
View: 709
Read: 530
The theory of linear poroelasticity describes the interaction between mechanical effects and adding or removing fluid from rock. It is critical to the study of such geological phenomena as earthquakes and landslides and is important for numerous engineering projects, including dams, groundwater withdrawal, and petroleum extraction. Now an advanced text synthesizes in one place, with one notation, numerous classical solutions and applications of this highly useful theory. The introductory chapter recounts parallel developments in geomechanics, hydrogeology, and reservoir engineering that are unified by the tenets of poroelasticity. Next, the theory's constitutive and governing equations and their associated material parameters are described. These equations are then specialized for different simplifying geometries: unbounded problem domains, uniaxial strain, plane strain, radial symmetry, and axisymmetry. Example problems from geomechanics, hydrogeology, and petroleum engineering are incorporated throughout to illustrate poroelastic behavior and solution methods for a wide variety of real-world scenarios. The final chapter provides outlines for finite-element and boundary-element formulations of the field's governing equations. Whether read as a course of study or consulted as a reference by researchers and professionals, this volume's user-friendly presentation makes accessible one of geophysics' most important subjects and will do much to reduce poroelasticity's reputation as difficult to master.
Petroleum Rock Mechanics
Author: Bernt Sigve Aadnøy, Reza Looyeh
Publisher: Gulf Professional Publishing
ISBN: 0123855462
Pages: 350
Year: 2011
View: 1237
Read: 835
Pt. 1. Fundamentals of solid mechanics -- pt. 2. Petroleum rock mechanics.
Geomechanics Applied to the Petroleum Industry
Author: Jean-François Nauroy
Publisher: Editions TECHNIP
ISBN: 271080932X
Pages: 198
Year: 2011
View: 743
Read: 244
Designing an efficient drilling program is a key step for the development of an oil and/or gas field. Variations in reservoir pressure, saturation and temperature, induced by reservoir production or CO2 injection, involve various coupled physical and chemical processes. Geomechanics, which consider all thermohydromechanical phenomena involved in rock behavior, play an important role in every operation involved in the exploitation of hydrocarbons, from drilling to production, and in CO2 geological storage operations as well. Pressure changes in the reservoir modify the in situ stresses and induce strains, not only within the reservoir itself, but also in the entire sedimentary column. In turn, these stress variations and associated strains modify the fluids flow in the reservoir and change the wellbore stability parameters. This book offers a large overview on applications of Geomechanics to petroleum industry. It presents the fundamentals of rock mechanics, describes the methods used to characterise rocks in the laboratory and the modelling of their mechanical behaviour ; it gives elements of numerical geomechanical modelling at the site scale. It also demonstrates the role of Geomechanics in the optimisation of drilling and production : it encompasses drillability, wellbore stability, sand production and hydraulic fracturing ; it provides the basic attainments to deal with the environmental aspects of heave or subsidence of the surface layers, CO2 sequestration and well abandonment ; and it shows how seismic monitoring and geomechanical modelling of reservoirs can help to optimise production or check cap rock integrity. This book will be of interest to all engineers involved in oil field development and petroleum engineering students, whether drillers or producers. It aims also at providing a large range of potential users with a simple approach of a broad field of knowledge.
Geomechanics and Geology
Author: J.P. Turner, D. Healy, R.R. Hillis, M. Welch
Publisher: Geological Society of London
ISBN: 1786203200
Pages: 298
Year: 2017-09-19
View: 413
Read: 1085
Geomechanics investigates the origin, magnitude and deformational consequences of stresses in the crust. In recent years awareness of geomechanical processes has been heightened by societal debates on fracking, human-induced seismicity, natural geohazards and safety issues with respect to petroleum exploration drilling, carbon sequestration and radioactive waste disposal. This volume explores the common ground linking geomechanics with inter alia economic and petroleum geology, structural geology, petrophysics, seismology, geotechnics, reservoir engineering and production technology. Geomechanics is a rapidly developing field that brings together a broad range of subsurface professionals seeking to use their expertise to solve current challenges in applied and fundamental geoscience. A rich diversity of case studies herein showcase applications of geomechanics to hydrocarbon exploration and field development, natural and artificial geohazards, reservoir stimulation, contemporary tectonics and subsurface fluid flow. These papers provide a representative snapshot of the exciting state of geomechanics and establish it firmly as a flourishing subdiscipline of geology that merits broadest exposure across the academic and corporate geosciences.
Petroleum Related Rock Mechanics
Author: Erling Fjar, R.M. Holt, A.M. Raaen, R. Risnes, P. Horsrud
Publisher: Elsevier
ISBN: 0080557090
Pages: 514
Year: 2008-01-04
View: 429
Read: 272
Engineers and geologists in the petroleum industry will find Petroleum Related Rock Mechanics, 2e, a powerful resource in providing a basis of rock mechanical knowledge - a knowledge which can greatly assist in the understanding of field behavior, design of test programs and the design of field operations. Not only does this text give an introduction to applications of rock mechanics within the petroleum industry, it has a strong focus on basics, drilling, production and reservoir engineering. Assessment of rock mechanical parameters is covered in depth, as is acoustic wave propagation in rocks, with possible link to 4D seismics as well as log interpretation. Learn the basic principles behind rock mechanics from leading academic and industry experts Quick reference and guide for engineers and geologists working in the field Keep informed and up to date on all the latest methods and fundamental concepts
Rock Physics and Geomechanics in the Study of Reservoirs and Repositories
Author: C. David, Mickaële Le Ravalec
Publisher: Editora 34
ISBN: 1862392307
Pages: 224
Year: 2007-01-01
View: 192
Read: 837
The study of reservoir and repository performance requires the integration of many different fields in Earth sciences, among them rock physics and geomechanics. The aim of this book is to emphasize how rock physics and geomechanics help to get a better insight into important issues linked to reservoir management for exploitation of natural resources, and to repository safety assessment for hazardous waste storage in geological environment. The studies presented here deal with the hydromechanical coupling in fractured rocks, the key experiments in safety assessment of repositories, the development of damaged zones during excavation in a shaley formation, the influence of temperature on the properties of shales, the poroelastic response of sandstones, the development and propagation of compaction bands in reservoir rocks, imaging techniques of geomaterials, the characterization and modelling of reservoirs using 4D seismic data, the mechanical behaviour of fractured rock masses, the petrophysical properties of fault zones, models for rock deformation by pressure solution and the elastic anisotropy in cracked rocks.
Geomechanics and Fluidodynamics
Author: Victor N. Nikolaevskiy
Publisher: Springer Science & Business Media
ISBN: 9401587094
Pages: 352
Year: 2013-06-29
View: 864
Read: 197
This monograph is based on subsurface hydrodynamics and applied geomechanics and places them in a unifying framework. It focuses on the understanding of physical and mechanical properties of geomaterials by presenting mathematical models of deformation and fracture with related experiments.
Geomechanics, Fluid Dynamics and Well Testing, Applied to Naturally Fractured Carbonate Reservoirs
Author: Nelson Enrique Barros Galvis
Publisher: Springer
ISBN: 3319775014
Pages: 147
Year: 2018-05-02
View: 1127
Read: 722
This thesis presents an important step towards a deeper understanding of naturally fractured carbonate reservoirs (NFCRs). It demonstrates the various kinds of discontinuities using geological evidence, mathematical kinematics model and computed tomography and uses this as a basis for proposing a new classification for NFCRs. Additionally, this study takes advantage of rock mechanics theory to illustrate how natural fractures can collapse due to fluid flow and pressure changes in the fractured media. The explanations and mathematical modeling developed in this dissertation can be used as diagnostic tools to predict fluid velocity, fluid flow, tectonic fracture collapse, pressure behavior during reservoir depleting, considering stress-sensitive and non-stress-sensitive, with nonlinear terms in the diffusivity equation applied to NFCRs. Furthermore, the book presents the description of real reservoirs with their field data as the principal goal in the mathematical description of the realistic phenomenology of NFCRs.
Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization
Author: Vimal Saxena, Michel Krief, Ludmila Adam
Publisher: Elsevier
ISBN: 012812332X
Pages: 484
Year: 2018-04-28
View: 543
Read: 179
The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization combines in a single useful handbook the multidisciplinary domains of the petroleum industry, including the fundamental concepts of rock physics, acoustic logging, waveform processing, and geophysical application modeling through graphical examples derived from field data. It includes results from core studies, together with graphics that validate and support the modeling process, and explores all possible facets of acoustic applications in reservoir evaluation for hydrocarbon exploration, development, and drilling support. The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization serves as a technical guide and research reference for oil and gas professionals, scientists, and students in the multidisciplinary field of reservoir characterization through the use of petrosonics. It overviews the fundamentals of borehole acoustics and rock physics, with a focus on reservoir evaluation applications, explores current advancements through updated research, and identifies areas of future growth. Presents theory, application, and limitations of borehole acoustics and rock physics through field examples and case studies Features "Petrosonic Workflows" for various acoustic applications and evaluations, which can be easily adapted for practical reservoir modeling and interpretation Covers the potential advantages of acoustic-based techniques and summarizes key results for easy geophysical application
Fundamentals of rock mechanics
Author: John Conrad Jaeger, Neville G. W. Cook
Publisher: Routledge
ISBN:
Pages: 593
Year: 1979
View: 784
Read: 212

Hydraulic Fracture Modeling
Author: Yu-Shu Wu
Publisher: Gulf Professional Publishing
ISBN: 0128129999
Pages: 566
Year: 2017-12-12
View: 917
Read: 1312
Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today’s petroleum engineer with an all-inclusive product to characterize and optimize today’s more complex reservoirs. Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics Provides today’s petroleum engineer with model validation tools backed by real-world case studies
Principles of Applied Reservoir Simulation
Author: John R. Fanchi,
Publisher: Gulf Professional Publishing
ISBN: 0128155647
Pages: 364
Year: 2018-06-05
View: 1173
Read: 511
Reservoir engineers today need to acquire more complex reservoir management and modeling skills. Principles of Applied Reservoir Simulation, Fourth Edition, continues to provide the fundamentals on these topics for both early and seasoned career engineers and researchers. Enhanced with more practicality and with a focus on more modern reservoir simulation workflows, this vital reference includes applications to not only traditional oil and gas reservoir problems but specialized applications in geomechanics, coal gas modelling, and unconventional resources. Strengthened with complementary software from the author to immediately apply to the engineer’s projects, Principles of Applied Reservoir Simulation, Fourth Edition, delivers knowledge critical for today’s basic and advanced reservoir and asset management. Gives hands-on experience in working with reservoir simulators and links them to other petroleum engineering activities Teaches on more specific reservoir simulation issues such as run control, tornado plot, linear displacement, fracture and cleat systems, and modern modelling workflows Updates on more advanced simulation practices like EOR, petrophysics, geomechanics, and unconventional reservoirs
Multiphase Fluid Flow in Porous and Fractured Reservoirs
Author: Yu-Shu Wu
Publisher: Gulf Professional Publishing
ISBN: 0128039116
Pages: 418
Year: 2015-09-23
View: 268
Read: 1089
Multiphase Fluid Flow in Porous and Fractured Reservoirs discusses the process of modeling fluid flow in petroleum and natural gas reservoirs, a practice that has become increasingly complex thanks to multiple fractures in horizontal drilling and the discovery of more unconventional reservoirs and resources. The book updates the reservoir engineer of today with the latest developments in reservoir simulation by combining a powerhouse of theory, analytical, and numerical methods to create stronger verification and validation modeling methods, ultimately improving recovery in stagnant and complex reservoirs. Going beyond the standard topics in past literature, coverage includes well treatment, Non-Newtonian fluids and rheological models, multiphase fluid coupled with geomechanics in reservoirs, and modeling applications for unconventional petroleum resources. The book equips today’s reservoir engineer and modeler with the most relevant tools and knowledge to establish and solidify stronger oil and gas recovery. Delivers updates on recent developments in reservoir simulation such as modeling approaches for multiphase flow simulation of fractured media and unconventional reservoirs Explains analytical solutions and approaches as well as applications to modeling verification for today’s reservoir problems, such as evaluating saturation and pressure profiles and recovery factors or displacement efficiency Utilize practical codes and programs featured from online companion website

Recently Visited