Pattern Recognition Book PDF, EPUB Download & Read Online Free

Pattern Recognition
Author: William Gibson
Publisher: Penguin UK
ISBN: 0141904461
Pages: 368
Year: 2004-06-24
View: 223
Read: 898
One of the most influential and imaginative writers of the past twenty years turns his attention to London - with dazzling results. Cayce Pollard owes her living to her pathological sensitivity to logos. In London to consult for the world's coolest ad agency, she finds herself catapulted, via her addiction to a mysterious body of fragmentary film footage, uploaded to the Web by a shadowy auteur, into a global quest for this unknown 'garage Kubrick'. Cayce becomes involved with an eccentric hacker, a vengeful ad executive, a defrocked mathematician, a Tokyo Otaku-coven known as Eye of the Dragon and, eventually, the elusive 'Kubrick' himself. William Gibson's new novel is about the eternal mystery of London, the coolest sneakers in the world, and life in (the former) USSR.
Pattern Recognition
Author: Sergios Theodoridis, Konstantinos Koutroumbas
Publisher: Academic Press
ISBN: 0080949126
Pages: 984
Year: 2008-11-26
View: 442
Read: 764
This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. The very latest methods are incorporated in this edition: semi-supervised learning, combining clustering algorithms, and relevance feedback. · Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques · Many more diagrams included--now in two color--to provide greater insight through visual presentation · Matlab code of the most common methods are given at the end of each chapter. · More Matlab code is available, together with an accompanying manual, via this site · Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms. · An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary, and solved examples including real-life data sets in imaging, and audio recognition. The companion book will be available separately or at a special packaged price (ISBN: 9780123744869). Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques Many more diagrams included--now in two color--to provide greater insight through visual presentation Matlab code of the most common methods are given at the end of each chapter An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. The companion book is available separately or at a special packaged price (Book ISBN: 9780123744869. Package ISBN: 9780123744913) Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms Solutions manual, powerpoint slides, and additional resources are available to faculty using the text for their course. Register at www.textbooks.elsevier.com and search on "Theodoridis" to access resources for instructor.
Pattern Classification
Author: Richard O. Duda, Peter E. Hart, David G. Stork
Publisher: John Wiley & Sons
ISBN: 111858600X
Pages: 680
Year: 2012-11-09
View: 673
Read: 1151
The first edition, published in 1973, has become a classic reference in the field. Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Chemometrics for Pattern Recognition
Author: Richard G. Brereton
Publisher: John Wiley & Sons
ISBN: 0470746475
Pages: 522
Year: 2009-06-29
View: 247
Read: 614
Over the past decade, pattern recognition has been one of the fastest growth points in chemometrics. This has been catalysed by the increase in capabilities of automated instruments such as LCMS, GCMS, and NMR, to name a few, to obtain large quantities of data, and, in parallel, the significant growth in applications especially in biomedical analytical chemical measurements of extracts from humans and animals, together with the increased capabilities of desktop computing. The interpretation of such multivariate datasets has required the application and development of new chemometric techniques such as pattern recognition, the focus of this work. Included within the text are: ‘Real world’ pattern recognition case studies from a wide variety of sources including biology, medicine, materials, pharmaceuticals, food, forensics and environmental science; Discussions of methods, many of which are also common in biology, biological analytical chemistry and machine learning; Common tools such as Partial Least Squares and Principal Components Analysis, as well as those that are rarely used in chemometrics such as Self Organising Maps and Support Vector Machines; Representation in full colour; Validation of models and hypothesis testing, and the underlying motivation of the methods, including how to avoid some common pitfalls. Relevant to active chemometricians and analytical scientists in industry, academia and government establishments as well as those involved in applying statistics and computational pattern recognition.
Pattern Recognition and Machine Learning
Author: Christopher M. Bishop
Publisher: Springer
ISBN: 1493938436
Pages: 738
Year: 2016-08-23
View: 275
Read: 518
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Pattern Recognition
Author: M. Narasimha Murty, V. Susheela Devi
Publisher: Springer Science & Business Media
ISBN: 0857294954
Pages: 263
Year: 2011-05-25
View: 363
Read: 1141
Observing the environment and recognising patterns for the purpose of decision making is fundamental to human nature. This book deals with the scientific discipline that enables similar perception in machines through pattern recognition (PR), which has application in diverse technology areas. This book is an exposition of principal topics in PR using an algorithmic approach. It provides a thorough introduction to the concepts of PR and a systematic account of the major topics in PR besides reviewing the vast progress made in the field in recent times. It includes basic techniques of PR, neural networks, support vector machines and decision trees. While theoretical aspects have been given due coverage, the emphasis is more on the practical. The book is replete with examples and illustrations and includes chapter-end exercises. It is designed to meet the needs of senior undergraduate and postgraduate students of computer science and allied disciplines.
Pattern Recognition and Classification
Author: Geoff Dougherty
Publisher: Springer Science & Business Media
ISBN: 1461453232
Pages: 196
Year: 2012-10-28
View: 601
Read: 171
The use of pattern recognition and classification is fundamental to many of the automated electronic systems in use today. However, despite the existence of a number of notable books in the field, the subject remains very challenging, especially for the beginner. Pattern Recognition and Classification presents a comprehensive introduction to the core concepts involved in automated pattern recognition. It is designed to be accessible to newcomers from varied backgrounds, but it will also be useful to researchers and professionals in image and signal processing and analysis, and in computer vision. Fundamental concepts of supervised and unsupervised classification are presented in an informal, rather than axiomatic, treatment so that the reader can quickly acquire the necessary background for applying the concepts to real problems. More advanced topics, such as semi-supervised classification, combining clustering algorithms and relevance feedback are addressed in the later chapters. This book is suitable for undergraduates and graduates studying pattern recognition and machine learning.
Error Estimation for Pattern Recognition
Author: Ulisses M. Braga Neto, Edward R. Dougherty
Publisher: John Wiley & Sons
ISBN: 1119079330
Pages: 336
Year: 2015-06-17
View: 312
Read: 1124
This book is the first of its kind to discuss error estimation with a model-based approach. From the basics of classifiers and error estimators to distributional and Bayesian theory, it covers important topics and essential issues pertaining to the scientific validity of pattern classification. Error Estimation for Pattern Recognition focuses on error estimation, which is a broad and poorly understood topic that reaches all research areas using pattern classification. It includes model-based approaches and discussions of newer error estimators such as bolstered and Bayesian estimators. This book was motivated by the application of pattern recognition to high-throughput data with limited replicates, which is a basic problem now appearing in many areas. The first two chapters cover basic issues in classification error estimation, such as definitions, test-set error estimation, and training-set error estimation. The remaining chapters in this book cover results on the performance and representation of training-set error estimators for various pattern classifiers. Additional features of the book include: • The latest results on the accuracy of error estimation • Performance analysis of re-substitution, cross-validation, and bootstrap error estimators using analytical and simulation approaches • Highly interactive computer-based exercises and end-of-chapter problems This is the first book exclusively about error estimation for pattern recognition. Ulisses M. Braga Neto is an Associate Professor in the Department of Electrical and Computer Engineering at Texas A&M University, USA. He received his PhD in Electrical and Computer Engineering from The Johns Hopkins University. Dr. Braga Neto received an NSF CAREER Award for his work on error estimation for pattern recognition with applications in genomic signal processing. He is an IEEE Senior Member. Edward R. Dougherty is a Distinguished Professor, Robert F. Kennedy ’26 Chair, and Scientific Director at the Center for Bioinformatics and Genomic Systems Engineering at Texas A&M University, USA. He is a fellow of both the IEEE and SPIE, and he has received the SPIE Presidents Award. Dr. Dougherty has authored several books including Epistemology of the Cell: A Systems Perspective on Biological Knowledge and Random Processes for Image and Signal Processing (Wiley-IEEE Press).
Pattern Recognition
Author: Sankar K. Pal, Pal. Amita
Publisher: World Scientific
ISBN: 981238653X
Pages: 612
Year: 2001
View: 1141
Read: 852
This volume, containing contributions by experts from all over the world, is a collection of 21 articles which present review and research material describing the evolution and recent developments of various pattern recognition methodologies, ranging from statistical, syntactic/linguistic, fuzzy-set-theoretic, neural, genetic-algorithmic and rough-set-theoretic to hybrid soft computing, with significant real-life applications. In addition, the book describes efficient soft machine learning algorithms for data mining and knowledge discovery. With a balanced mixture of theory, algorithms and applications, as well as up-to-date information and an extensive bibliography, Pattern Recognition: From Classical to Modern Approaches is a very useful resource. Contents: Pattern Recognition: Evolution of Methodologies and Data Mining (A Pal & S K Pal); Adaptive Stochastic Algorithms for Pattern Classification (M A L Thathachar & P S Sastry); Shape in Images (K V Mardia); Decision Trees for Classification: A Review and Some New Results (R Kothari & M Dong); Syntactic Pattern Recognition (A K Majumder & A K Ray); Fuzzy Sets as a Logic Canvas for Pattern Recognition (W Pedrycz & N Pizzi); Neural Network Based Pattern Recognition (V David Sanchez A); Networks of Spiking Neurons in Data Mining (K Cios & D M Sala); Genetic Algorithms, Pattern Classification and Neural Networks Design (S Bandyopadhyay et al.); Rough Sets in Pattern Recognition (A Skowron & R Swiniarski); Automated Generation of Qualitative Representations of Complex Objects by Hybrid Soft-Computing Methods (E H Ruspini & I S Zwir); Writing Speed and Writing Sequence Invariant On-line Handwriting Recognition (S-H Cha & S N Srihari); Tongue Diagnosis Based on Biometric Pattern Recognition Technology (K Wang et al.); and other papers. Readership: Graduate students, researchers and academics in pattern recognition.
Pattern recognition
Author: Derek Wallace James Corcoran
Publisher:
ISBN:
Pages: 223
Year: 1971
View: 541
Read: 1332

A Probabilistic Theory of Pattern Recognition
Author: Luc Devroye, Laszlo Györfi, Gabor Lugosi
Publisher: Springer Science & Business Media
ISBN: 1461207118
Pages: 638
Year: 2013-11-27
View: 368
Read: 484
A self-contained and coherent account of probabilistic techniques, covering: distance measures, kernel rules, nearest neighbour rules, Vapnik-Chervonenkis theory, parametric classification, and feature extraction. Each chapter concludes with problems and exercises to further the readers understanding. Both research workers and graduate students will benefit from this wide-ranging and up-to-date account of a fast- moving field.
Neural Networks for Pattern Recognition
Author: Albert Nigrin
Publisher: MIT Press
ISBN: 0262140543
Pages: 413
Year: 1993
View: 623
Read: 483
In a simple and accessible way it extends embedding field theory into areas of machine intelligence that have not been clearly dealt with before.
Pattern Recognition in Biology
Author: Marsha S. Corrigan
Publisher: Nova Publishers
ISBN: 1600217168
Pages: 253
Year: 2007
View: 1108
Read: 1154
Pattern recognition is the research area that studies the operation and design of systems that recognise patterns in data. It encloses subdisciplines like discriminant analysis, feature extraction, error estimation, cluster analysis, grammatical inference and parsing. This book presents research from around the world.
Machine Learning and Data Mining in Pattern Recognition
Author: Petra Perner, Maria Petrou
Publisher: Springer
ISBN: 3540480978
Pages: 224
Year: 2003-06-26
View: 851
Read: 579
The field of machine learning and data mining in connection with pattern recognition enjoys growing popularity and attracts many researchers. Automatic pattern recognition systems have proven successful in many applications. The wide use of these systems depends on their ability to adapt to changing environmental conditions and to deal with new objects. This requires learning capabilities on the parts of these systems. The exceptional attraction of learning in pattern recognition lies in the specific data themselves and the different stages at which they get processed in a pattern recognition system. This results a specific branch within the field of machine learning. At the workshop, were presented machine learning approaches for image pre-processing, image segmentation, recognition and interpretation. Machine learning systems were shown on applications such as document analysis and medical image analysis. Many databases are developed that contain multimedia sources such as images, measurement protocols, and text documents. Such systems should be able to retrieve these sources by content. That requires specific retrieval and indexing strategies for images and signals. Higher quality database contents can be achieved if it were possible to mine these databases for their underlying information. Such mining techniques have to consider the specific characteristic of the image sources. The field of mining multimedia databases is just starting out. We hope that our workshop can attract many other researchers to this subject.
Pattern Recognition and Neural Networks
Author: Brian D. Ripley
Publisher: Cambridge University Press
ISBN: 0521717701
Pages: 403
Year: 2007
View: 1225
Read: 1208
Ripley brings together two crucial ideas in pattern recognition: statistical methods and machine learning via neural networks. He brings unifying principles to the fore, and reviews the state of the subject. Ripley also includes many examples to illustrate real problems in pattern recognition and how to overcome them.

Recently Visited