Multibody Mechatronic Systems Book PDF, EPUB Download & Read Online Free

Multibody Mechatronic Systems
Author: Marco Ceccarelli, Eusebio Eduardo Hernández Martinez
Publisher: Springer
ISBN: 3319098586
Pages: 581
Year: 2014-08-19
View: 212
Read: 237
This volume contains the Proceedings of MUSME 2014, held at Huatulco in Oaxaca, Mexico, October 2014. Topics include analysis and synthesis of mechanisms; dynamics of multibody systems; design algorithms for mechatronic systems; simulation procedures and results; prototypes and their performance; robots and micromachines; experimental validations; theory of mechatronic simulation; mechatronic systems; and control of mechatronic systems. The MUSME symposium on Multibody Systems and Mechatronics was held under the auspices of IFToMM, the International Federation for Promotion of Mechanism and Machine Science, and FeIbIM, the Iberoamerican Federation of Mechanical Engineering. Since the first symposium in 2002, MUSME events have been characterised by the way they stimulate the integration between the various mechatronics and multibody systems dynamics disciplines, present a forum for facilitating contacts among researchers and students mainly in South American countries, and serve as a joint conference for the IFToMM and FeIbIM communities.
Multibody Mechatronic Systems
Author: João Carlos Mendes Carvalho, Daniel Martins, Roberto Simoni, Henrique Simas
Publisher: Springer
ISBN: 3319675672
Pages: 567
Year: 2017-09-29
View: 996
Read: 777
These are the Proceedings of the 6th International Symposium on Multibody Systems and Mechatronics (MUSME 2017) which was held in Florianópolis, Brazil, October 24-28, 2017. Topics addressed include analysis and synthesis of mechanisms; dynamics of multibody systems; design algorithms for mechatronic systems; simulation procedures and results; prototypes and their performance; robots and micromachines; experimental validations; theory of mechatronic simulation; mechatronic systems; and control of mechatronic systems. The MUSME 2017 Symposium was one of the activities of the FEIbIM Commission for Mechatronics and IFToMM technical Committees for Multibody Dynamics, Robotics and Mechatronics.
Applied Dynamics
Author: Francis C. Moon
Publisher: John Wiley & Sons
ISBN: 3527618376
Pages: 504
Year: 2008-09-26
View: 790
Read: 1216
Applied Dynamics provides a modern and thorough examination of dynamics with specific emphasis on physical examples and applications such as: robotic systems, magnetic bearings, aerospace dynamics, and microelectromagnetic machines. Also includes the development of the method of virtual velocities based on the principle of virtual power.
Multibody Mechatronic Systems
Author: Joao Carlos Mendes Carvalho, Daniel Martins, Roberto Simoni
Publisher: Springer
ISBN: 3319884484
Pages: 580
Year: 2018-08-22
View: 422
Read: 231
These are the Proceedings of the 6th International Symposium on Multibody Systems and Mechatronics (MUSME 2017) which was held in Florianópolis, Brazil, October 24-28, 2017. Topics addressed include analysis and synthesis of mechanisms; dynamics of multibody systems; design algorithms for mechatronic systems; simulation procedures and results; prototypes and their performance; robots and micromachines; experimental validations; theory of mechatronic simulation; mechatronic systems; and control of mechatronic systems. The MUSME 2017 Symposium was one of the activities of the FEIbIM Commission for Mechatronics and IFToMM technical Committees for Multibody Dynamics, Robotics and Mechatronics.
Mechatronic Systems Design
Author: Klaus Janschek
Publisher: Springer Science & Business Media
ISBN: 3642175317
Pages: 805
Year: 2011-09-18
View: 948
Read: 730
In this textbook, fundamental methods for model-based design of mechatronic systems are presented in a systematic, comprehensive form. The method framework presented here comprises domain-neutral methods for modeling and performance analysis: multi-domain modeling (energy/port/signal-based), simulation (ODE/DAE/hybrid systems), robust control methods, stochastic dynamic analysis, and quantitative evaluation of designs using system budgets. The model framework is composed of analytical dynamic models for important physical and technical domains of realization of mechatronic functions, such as multibody dynamics, digital information processing and electromechanical transducers. Building on the modeling concept of a technology-independent generic mechatronic transducer, concrete formulations for electrostatic, piezoelectric, electromagnetic, and electrodynamic transducers are presented. More than 50 fully worked out design examples clearly illustrate these methods and concepts and enable independent study of the material.
Selected Topics in Structronics and Mechatronic Systems
Author: Alexander Belyaev, Ardéshir Guran
Publisher: World Scientific
ISBN: 9812795529
Pages: 441
Year: 2003
View: 816
Read: 656
In the past twenty years, the scientific community has witnessed a technological revolution in products and processes, from consumer goods to factory automation systems. This revolution is based on the integration, right from the design phase, of the best that current technology can offer in electronics, control systems, computers, structures and mechanics. The terms that have emerged, for the synergetic approach to design, and integration of sensors, actuators, computers, structures and mechanics, are OC structronicsOCO and OC mechatronicsOCO. Structronics can be viewed as an integration of mechatronic systems into structures, which emphasizes a synergistic integration beginning at fertilization. Similar to mechatronics (established in the 1980s), structronics is recognized as one of the essential technologies in the 21st century. This comprehensive reference book gives an overview of the current state of structronics and mechatronics in both structural/mechanical and material systems. Consisting of nine self-contained chapters, it presents recent developments and covers emerging topics in the field. The key features include: . OCo treatment of the nonholonomic variables in robotics. OCo attenuation of fluid flow pulsation in hydraulic systems. OCo presentation of mathematical modeling and experiments on complex nonlinear dynamics of washing machines. OCo a survey of research findings in hydraulic gap control of rolling mills. OCo detailed description of mathematical modeling and nonlinear control of a temper controlling mill. OCo applications of high frequency dynamics in engineering structures. OCo development of novel computational methods to include plasticity and damage in flexible multibody systems. OCo new trends in optimal design of engineering structures. OCo a review of ionic polymer metal composites (IPMCs) as sensors, actuators and artificial muscles. Selected Topics in Structronics and Mechatronic Systems will be of interest to engineers, materials scientists, physicists and applied mathematicians. Contents: On the Use of Nonholonomic Variables in Robotics (H Bremer); Compensators for the Attenuation of Fluid Flow Pulsations in Hydraulic Systems (J Mikota); Some Aspects of Washing Complex Nonlinear Dynamics (M BolteAcentsar); Analysis and Nonlinear Control of Hydraulic Systems in Rolling Mills (R M Novak); Mathematical Modeling and Nonlinear Control of a Temper Rolling Mill (S Fuchshumer et al.); Combining Continuous and Discrete Energy Approaches to High Frequency Dynamics of Structures (A K Belyaev); Computational Methods for Elasto-Plastic Multibody Systems (J Gerstmayr); New Trends in Optimal Structural Control (K G Arvanitis et al.); Ionic PolymerOCoConductor Composites (IPCC) as Biomimietic Sensors, Actuators and Artificial Muscles (M Shahinpoor & A Guran). Readership: Engineers, materials scientists, physicists and applied mathematicians."
Mechatronic Systems Design
Author: Klaus Janschek
Publisher: Springer Science & Business Media
ISBN: 3642175317
Pages: 805
Year: 2011-09-18
View: 865
Read: 785
In this textbook, fundamental methods for model-based design of mechatronic systems are presented in a systematic, comprehensive form. The method framework presented here comprises domain-neutral methods for modeling and performance analysis: multi-domain modeling (energy/port/signal-based), simulation (ODE/DAE/hybrid systems), robust control methods, stochastic dynamic analysis, and quantitative evaluation of designs using system budgets. The model framework is composed of analytical dynamic models for important physical and technical domains of realization of mechatronic functions, such as multibody dynamics, digital information processing and electromechanical transducers. Building on the modeling concept of a technology-independent generic mechatronic transducer, concrete formulations for electrostatic, piezoelectric, electromagnetic, and electrodynamic transducers are presented. More than 50 fully worked out design examples clearly illustrate these methods and concepts and enable independent study of the material.
Dynamics of Underactuated Multibody Systems
Author: Robert Seifried
Publisher: Springer Science & Business Media
ISBN: 3319012282
Pages: 249
Year: 2013-11-08
View: 1180
Read: 1132
Underactuated multibody systems are intriguing mechatronic systems, as they posses fewer control inputs than degrees of freedom. Some examples are modern light-weight flexible robots and articulated manipulators with passive joints. This book investigates such underactuated multibody systems from an integrated perspective. This includes all major steps from the modeling of rigid and flexible multibody systems, through nonlinear control theory, to optimal system design. The underlying theories and techniques from these different fields are presented using a self-contained and unified approach and notation system. Subsequently, the book focuses on applications to large multibody systems with multiple degrees of freedom, which require a combination of symbolical and numerical procedures. Finally, an integrated, optimization-based design procedure is proposed, whereby both structural and control design are considered concurrently. Each chapter is supplemented by illustrated examples.
Dynamics of Mechatronics Systems
Author: Jan Awrejcewicz, Donat Lewandowski, Paweł Olejnik
Publisher: World Scientific
ISBN: 9813146567
Pages: 356
Year: 2016-08-10
View: 487
Read: 352
This book describes the interplay of mechanics, electronics, electrotechnics, automation and biomechanics. It provides a broad overview of mechatronics systems ranging from modeling and dimensional analysis, and an overview of magnetic, electromagnetic and piezo-electric phenomena. It also includes the investigation of the pneumo-fluid-mechanical, as well as electrohydraulic servo systems, modeling of dynamics of an atom/particle embedded in the magnetic field, integrity aspects of the Maxwell's equations, the selected optimization problems of angular velocity control of a DC motor subjected to chaotic disturbances with and without stick-slip dynamics, and the analysis of a human chest adjacent to the elastic backrest aimed at controlling force to minimize relative compression of the chest employing the LQR. This book provides a theoretical background on the analysis of various kinds of mechatronics systems, along with their computational analysis, control, optimization as well as laboratory investigations.
Mechatronic Systems
Author: Georg Pelz
Publisher: John Wiley & Sons
ISBN: 0470849797
Pages: 236
Year: 2003-06-09
View: 411
Read: 793
Covers the modelling and simulation of mechatronic and micromechatronic systems using HDLs. Provides an overview of the design of digital and analog circuitry and software for mechatronic systems. Presents practical guidance on both chip and systems design for a wide range of mechatronic applications. Focuses on a practical approach to the design and simulation of electronic hardware and components of mechatronic systems.
Intelligent Mechatronic Systems
Author: Rochdi Merzouki, Arun Kumar Samantaray, Pushparaj Mani Pathak, Belkacem Ould Bouamama
Publisher: Springer Science & Business Media
ISBN: 144714628X
Pages: 943
Year: 2012-11-27
View: 860
Read: 1321
Acting as a support resource for practitioners and professionals looking to advance their understanding of complex mechatronic systems, Intelligent Mechatronic Systems explains their design and recent developments from first principles to practical applications. Detailed descriptions of the mathematical models of complex mechatronic systems, developed from fundamental physical relationships, are built on to develop innovative solutions with particular emphasis on physical model-based control strategies. Following a concurrent engineering approach, supported by industrial case studies, and drawing on the practical experience of the authors, Intelligent Mechatronic Systems covers range of topic and includes: An explanation of a common graphical tool for integrated design and its uses from modeling and simulation to the control synthesis Introductions to key concepts such as different means of achieving fault tolerance, robust overwhelming control and force and impedance control Dedicated chapters for advanced topics such as multibody dynamics and micro-electromechanical systems, vehicle mechatronic systems, robot kinematics and dynamics, space robotics and intelligent transportation systems Detailed discussion of cooperative environments and reconfigurable systems Intelligent Mechatronic Systems provides control, electrical and mechanical engineers and researchers in industrial automation with a means to design practical, functional and safe intelligent systems.
Mechatronics by Bond Graphs
Author: Vjekoslav Damić, John Montgomery
Publisher: Springer
ISBN: 3662490048
Pages: 510
Year: 2016-01-14
View: 791
Read: 827
This book presents a computer-aided approach to the design of mechatronic systems. Its subject is an integrated modeling and simulation in a visual computer environment. Since the first edition, the simulation software changed enormously, became more user-friendly and easier to use. Therefore, a second edition became necessary taking these improvements into account. The modeling is based on system top-down and bottom-up approach. The mathematical models are generated in a form of differential-algebraic equations and solved using numerical and symbolic algebra methods. The integrated approach developed is applied to mechanical, electrical and control systems, multibody dynamics, and continuous systems.
Dynamics of Underactuated Multibody Systems
Author: Robert Seifried
Publisher: Springer Science & Business Media
ISBN: 3319012282
Pages: 249
Year: 2013-11-08
View: 653
Read: 1227
Underactuated multibody systems are intriguing mechatronic systems, as they posses fewer control inputs than degrees of freedom. Some examples are modern light-weight flexible robots and articulated manipulators with passive joints. This book investigates such underactuated multibody systems from an integrated perspective. This includes all major steps from the modeling of rigid and flexible multibody systems, through nonlinear control theory, to optimal system design. The underlying theories and techniques from these different fields are presented using a self-contained and unified approach and notation system. Subsequently, the book focuses on applications to large multibody systems with multiple degrees of freedom, which require a combination of symbolical and numerical procedures. Finally, an integrated, optimization-based design procedure is proposed, whereby both structural and control design are considered concurrently. Each chapter is supplemented by illustrated examples.
Virtual Nonlinear Multibody Systems
Author: Werner Schiehlen, Michael Valásek
Publisher: Springer Science & Business Media
ISBN: 140201340X
Pages: 439
Year: 2003-06-30
View: 771
Read: 472
This book contains an edited versIOn of lectures presented at the NATO ADVANCED STUDY INSTITUTE on VIRTUAL NONLINEAR MUL TIBODY SYSTEMS which was held in Prague, Czech Republic, from 23 June to 3 July 2002. It was organized by the Department of Mechanics, Faculty of Mechanical Engineering, Czech Technical University in Prague, in cooperation with the Institute B of Mechanics, University of Stuttgart, Germany. The ADVANCED STUDY INSTITUTE addressed the state of the art in multibody dynamics placing special emphasis on nonlinear systems, virtual reality, and control design as required in mechatronics and its corresponding applications. Eighty-six participants from twenty-two countries representing academia, industry, government and research institutions attended the meeting. The high qualification of the participants contributed greatly to the success of the ADVANCED STUDY INSTITUTE in that it promoted the exchange of experience between leading scientists and young scholars, and encouraged discussions to generate new ideas and to define directions of research and future developments. The full program of the ADVANCED STUDY INSTITUTE included also contributed presentations made by participants where different topics were explored, among them: Such topics include: nonholonomic systems; flexible multibody systems; contact, impact and collision; numerical methods of differential-algebraical equations; simulation approaches; virtual modelling; mechatronic design; control; biomechanics; space structures and vehicle dynamics. These presentations have been reviewed and a selection will be published in this volume, and in special issues of the journals Multibody System Dynamics and Mechanics of Structures and Machines.
Multibody System Dynamics, Robotics and Control
Author: Hubert Gattringer, Johannes Gerstmayr
Publisher: Springer Science & Business Media
ISBN: 3709112893
Pages: 314
Year: 2013-01-06
View: 441
Read: 769
The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.