Low Level Programming C Assembly And Program Execution On Intel 64 Architecture Book PDF, EPUB Download & Read Online Free

Low-Level Programming
Author: Igor Zhirkov
Publisher: Apress
ISBN: 1484224035
Pages: 435
Year: 2017-06-27
View: 1023
Read: 511
Learn Intel 64 assembly language and architecture, become proficient in C, and understand how the programs are compiled and executed down to machine instructions, enabling you to write robust, high-performance code. Low-Level Programming explains Intel 64 architecture as the result of von Neumann architecture evolution. The book teaches the latest version of the C language (C11) and assembly language from scratch. It covers the entire path from source code to program execution, including generation of ELF object files, and static and dynamic linking. Code examples and exercises are included along with the best code practices. Optimization capabilities and limits of modern compilers are examined, enabling you to balance between program readability and performance. The use of various performance-gain techniques is demonstrated, such as SSE instructions and pre-fetching. Relevant Computer Science topics such as models of computation and formal grammars are addressed, and their practical value explained. What You'll Learn Low-Level Programming teaches programmers to: Freely write in assembly language Understand the programming model of Intel 64 Write maintainable and robust code in C11 Follow the compilation process and decipher assembly listings Debug errors in compiled assembly code Use appropriate models of computation to greatly reduce program complexity Write performance-critical code Comprehend the impact of a weak memory model in multi-threaded applications Who This Book Is For Intermediate to advanced programmers and programming students
Low-Level Programming
Author: Igor Zhirkov
Publisher: Apress
ISBN: 1484224027
Pages: 350
Year: 2017-06-04
View: 841
Read: 344
This book teaches programmers and programming students how to use x64 assembly to write low-level code in C for performance-critical programs and how to compile and execute it inside the Intel 64 hardware and OS framework. Low-Level Programming presents Intel 64 architecture as a development of von Neumann architecture featuring protection mechanisms and performance amplifiers such as caches and branch predicting. It proceeds to investigate the compilation cycle and ELF object files. Elucidating a structured approach to C with code examples, exercises, and a companion annex of source code, the book models best coding practices for implementing language abstractions on top of assembly. The author examines the optimization capabilities and limits of modern compilers, and he demonstrates the use of various performance-gain techniques, such as specialized instructions and prefetching. What Readers Will LearnLow-Level Programming teaches programmers how to use assembly language and C to write code for Intel 64 platforms and to look under the hood for various purposes, including the following:• Making code more performant on the assembly level• Debugging compiler and optimizer errors in native code• Fixing executables by disassembly in the absence of source code• Diagnosing malware Who This Book Is ForIntermediate-to-advanced programmers and programming students.
X86 Assembly Language and C Fundamentals
Author: Joseph Cavanagh
Publisher: CRC Press
ISBN: 1498759742
Pages: 813
Year: 2015-09-15
View: 1004
Read: 1025
The predominant language used in embedded microprocessors, assembly language lets you write programs that are typically faster and more compact than programs written in a high-level language and provide greater control over the program applications. Focusing on the languages used in X86 microprocessors, X86 Assembly Language and C Fundamentals explains how to write programs in the X86 assembly language, the C programming language, and X86 assembly language modules embedded in a C program. A wealth of program design examples, including the complete code and outputs, help you grasp the concepts more easily. Where needed, the book also details the theory behind the design. Learn the X86 Microprocessor Architecture and Commonly Used Instructions Assembly language programming requires knowledge of number representations, as well as the architecture of the computer on which the language is being used. After covering the binary, octal, decimal, and hexadecimal number systems, the book presents the general architecture of the X86 microprocessor, individual addressing modes, stack operations, procedures, arrays, macros, and input/output operations. It highlights the most commonly used X86 assembly language instructions, including data transfer, branching and looping, logic, shift and rotate, and string instructions, as well as fixed-point, binary-coded decimal (BCD), and floating-point arithmetic instructions. Get a Solid Foundation in a Language Commonly Used in Digital Hardware Written for students in computer science and electrical, computer, and software engineering, the book assumes a basic background in C programming, digital logic design, and computer architecture. Designed as a tutorial, this comprehensive and self-contained text offers a solid foundation in assembly language for anyone working with the design of digital hardware.
Modern X86 Assembly Language Programming
Author: Daniel Kusswurm
Publisher: Apress
ISBN: 1484200640
Pages: 700
Year: 2014-11-29
View: 673
Read: 1156
Modern X86 Assembly Language Programming shows the fundamentals of x86 assembly language programming. It focuses on the aspects of the x86 instruction set that are most relevant to application software development. The book's structure and sample code are designed to help the reader quickly understand x86 assembly language programming and the computational capabilities of the x86 platform. Please note: Book appendixes can be downloaded here: http://www.apress.com/9781484200650 Major topics of the book include the following: 32-bit core architecture, data types, internal registers, memory addressing modes, and the basic instruction set X87 core architecture, register stack, special purpose registers, floating-point encodings, and instruction set MMX technology and instruction set Streaming SIMD extensions (SSE) and Advanced Vector Extensions (AVX) including internal registers, packed integer arithmetic, packed and scalar floating-point arithmetic, and associated instruction sets 64-bit core architecture, data types, internal registers, memory addressing modes, and the basic instruction set 64-bit extensions to SSE and AVX technologies X86 assembly language optimization strategies and techniques
Guide to Assembly Language
Author: James T. Streib
Publisher: Springer Science & Business Media
ISBN: 0857292714
Pages: 257
Year: 2011-03-01
View: 606
Read: 468
This book will enable the reader to very quickly begin programming in assembly language. Through this hands-on programming, readers will also learn more about the computer architecture of the Intel 32-bit processor, as well as the relationship between high-level and low-level languages. Topics: presents an overview of assembly language, and an introduction to general purpose registers; illustrates the key concepts of each chapter with complete programs, chapter summaries, and exercises; covers input/output, basic arithmetic instructions, selection structures, and iteration structures; introduces logic, shift, arithmetic shift, rotate, and stack instructions; discusses procedures and macros, and examines arrays and strings; investigates machine language from a discovery perspective. This textbook is an ideal introduction to programming in assembly language for undergraduate students, and a concise guide for professionals wishing to learn how to write logically correct programs in a minimal amount of time.
32/64-Bit 80x86 Assembly Language Architecture
Author: James Leiterman
Publisher: Jones & Bartlett Publishers
ISBN: 1449612709
Pages: 545
Year: 2010-10-25
View: 503
Read: 604
The increasing complexity of programming environments provides a number of opportunities for assembly language programmers. 32/64-Bit 80x86 Assembly Language Architecture attempts to break through that complexity by providing a step-by-step understanding of programming Intel and AMD 80x86 processors in assembly language. This book explains 32-bit and 64-bit 80x86 assembly language programming inclusive of the SIMD (single instruction multiple data) instruction supersets that bring the 80x86 processor into the realm of the supercomputer, gives insight into the FPU (floating-point unit) chip in every Pentium processor, and offers strategies for optimizing code.
Assembly Language Step-by-Step
Author: Jeff Duntemann
Publisher: John Wiley & Sons
ISBN: 1118080998
Pages: 648
Year: 2011-03-03
View: 1284
Read: 1105
The eagerly anticipated new edition of the bestselling introduction to x86 assembly language The long-awaited third edition of this bestselling introduction to assembly language has been completely rewritten to focus on 32-bit protected-mode Linux and the free NASM assembler. Assembly is the fundamental language bridging human ideas and the pure silicon hearts of computers, and popular author Jeff Dunteman retains his distinctive lighthearted style as he presents a step-by-step approach to this difficult technical discipline. He starts at the very beginning, explaining the basic ideas of programmable computing, the binary and hexadecimal number systems, the Intel x86 computer architecture, and the process of software development under Linux. From that foundation he systematically treats the x86 instruction set, memory addressing, procedures, macros, and interface to the C-language code libraries upon which Linux itself is built. Serves as an ideal introduction to x86 computing concepts, as demonstrated by the only language directly understood by the CPU itself Uses an approachable, conversational style that assumes no prior experience in programming of any kind Presents x86 architecture and assembly concepts through a cumulative tutorial approach that is ideal for self-paced instruction Focuses entirely on free, open-source software, including Ubuntu Linux, the NASM assembler, the Kate editor, and the Gdb/Insight debugger Includes an x86 instruction set reference for the most common machine instructions, specifically tailored for use by programming beginners Woven into the presentation are plenty of assembly code examples, plus practical tips on software design, coding, testing, and debugging, all using free, open-source software that may be downloaded without charge from the Internet.
Advanced C and C++ Compiling
Author: Milan Stevanovic
Publisher: Apress
ISBN: 1430266686
Pages: 340
Year: 2014-04-30
View: 921
Read: 781
Learning how to write C/C++ code is only the first step. To be a serious programmer, you need to understand the structure and purpose of the binary files produced by the compiler: object files, static libraries, shared libraries, and, of course, executables. Advanced C and C++ Compiling explains the build process in detail and shows how to integrate code from other developers in the form of deployed libraries as well as how to resolve issues and potential mismatches between your own and external code trees. With the proliferation of open source, understanding these issues is increasingly the responsibility of the individual programmer. Advanced C and C++ Compiling brings all of the information needed to move from intermediate to expert programmer together in one place -- an engineering guide on the topic of C/C++ binaries to help you get the most accurate and pertinent information in the quickest possible time.
Low Level C-Programming for Designers 2017
Author: Lars Bengtsson, Lennart Lindh
Publisher:
ISBN: 1549601474
Pages: 134
Year: 2017-08-27
View: 217
Read: 612
The motivation for reading this book is the need of practical training and knowledge in low level C and microcontroller architectures for embedded products. The aim of the book is to prepare the designer for embedded system projects by walking step by step through an entire design of an embedded system together with adequate theory.
Modern Assembly Language Programming with the ARM Processor
Author: Larry D. Pyeatt
Publisher: Newnes
ISBN: 0128037164
Pages: 504
Year: 2016-05-03
View: 1109
Read: 979
Modern Assembly Language Programming with the ARM Processor is a tutorial-based book on assembly language programming using the ARM processor. It presents the concepts of assembly language programming in different ways, slowly building from simple examples towards complex programming on bare-metal embedded systems. The ARM processor was chosen as it has fewer instructions and irregular addressing rules to learn than most other architectures, allowing more time to spend on teaching assembly language programming concepts and good programming practice. In this textbook, careful consideration is given to topics that students struggle to grasp, such as registers vs. memory and the relationship between pointers and addresses, recursion, and non-integral binary mathematics. A whole chapter is dedicated to structured programming principles. Concepts are illustrated and reinforced with a large number of tested and debugged assembly and C source listings. The book also covers advanced topics such as fixed and floating point mathematics, optimization, and the ARM VFP and NEONTM extensions. PowerPoint slides and a solutions manual are included. This book will appeal to professional embedded systems engineers, as well as computer engineering students taking a course in assembly language using the ARM processor. Concepts are illustrated and reinforced with a large number of tested and debugged assembly and C source listing Intended for use on very low-cost platforms, such as the Raspberry Pi or pcDuino, but with the support of a full Linux operating system and development tools Includes discussions of advanced topics, such as fixed and floating point mathematics, optimization, and the ARM VFP and NEON extensions
LINUX Assembly Language Programming
Author: Bob Neveln
Publisher: Prentice Hall Professional
ISBN: 0130879401
Pages: 249
Year: 2000
View: 1213
Read: 1076
Master x86 language from the Linux point of view with this one-concept-at-a-time guide. Neveln gives an "under the hood" perspective of how Linux works and shows how to create device drivers. The CD-ROM includes all source code from the book plus edlinas, an x86 simulator that's perfect for hands-on, interactive assembler development.
Mastering Assembly Programming
Author: Alexey Lyashko
Publisher: Packt Publishing Ltd
ISBN: 1787120074
Pages: 290
Year: 2017-09-27
View: 1228
Read: 1199
Incorporate the assembly language routines in your high level language applications About This Book Understand the Assembly programming concepts and the benefits of examining the AL codes generated from high level languages Learn to incorporate the assembly language routines in your high level language applications Understand how a CPU works when programming in high level languages Who This Book Is For This book is for developers who would like to learn about Assembly language. Prior programming knowledge of C and C++ is assumed. What You Will Learn Obtain deeper understanding of the underlying platform Understand binary arithmetic and logic operations Create elegant and efficient code in Assembly language Understand how to link Assembly code to outer world Obtain in-depth understanding of relevant internal mechanisms of Intel CPU Write stable, efficient and elegant patches for running processes In Detail The Assembly language is the lowest level human readable programming language on any platform. Knowing the way things are on the Assembly level will help developers design their code in a much more elegant and efficient way. It may be produced by compiling source code from a high-level programming language (such as C/C++) but can also be written from scratch. Assembly code can be converted to machine code using an assembler. The first section of the book starts with setting up the development environment on Windows and Linux, mentioning most common toolchains. The reader is led through the basic structure of CPU and memory, and is presented the most important Assembly instructions through examples for both Windows and Linux, 32 and 64 bits. Then the reader would understand how high level languages are translated into Assembly and then compiled into object code. Finally we will cover patching existing code, either legacy code without sources or a running code in same or remote process. Style and approach This book takes a step-by-step, detailed approach to Comprehensively learning Assembly Programming.
Introduction to 64 Bit Intel Assembly Language Programming for Linux
Author: Ray Seyfarth
Publisher: CreateSpace
ISBN: 1478119209
Pages: 310
Year: 2012-06-01
View: 443
Read: 707
This is the second edition of this assembly language programming textbook introducing programmers to 64 bit Intel assembly language. The primary addition to the second edition is the discussion of the free integrated development environment, ebe, designed by the author specifically to meet the needs of assembly language programmers. Ebe is a Python program which uses the Tkinter and Pwm widget sets to implement a GUI environment consisting of a source window, a data window, a registers window, a console window, a terminal window and a project window. The source window includes a full-featured text editor with convenient controls for assembling, linking and debugging a program. The project facility allows a program to be built from C source code files and assembly source files. Assembly is performed automatically using the yasm assembler and linking is performed with ld or gcc. Debugging operates by transparently sending commands into the gdb debugger while automatically displaying registers and variables after each debugging step. Additional information about ebe can be found at http: //www.rayseyfarth.com. The book is intended as a first assembly language book for programmers experienced in high level programming in a language like C or C++. The assembly programming is performed using the yasm assembler automatically from the ebe IDE under the Linux operating system. The book primarily teaches how to write assembly code compatible with C programs. The reader will learn to call C functions from assembly language and to call assembly functions from C in addition to writing complete programs in assembly language. The gcc compiler is used internally to compile C programs. The book starts early emphasizing using ebe to debug programs, along with teaching equivalent commands using gdb. Being able to single-step assembly programs is critical in learning assembly programming. Ebe makes this far easier than using gdb directly. Highlights of the book include doing input/output programming using the Linux system calls and the C library, implementing data structures in assembly language and high performance assembly language programming. Early chapters of the book rely on using the debugger to observe program behavior. After a chapter on functions, the user is prepared to use printf and scanf from the C library to perform I/O. The chapter on data structures covers singly linked lists, doubly linked circular lists, hash tables and binary trees. Test programs are presented for all these data structures. There is a chapter on optimization techniques and 3 chapters on specific optimizations. One chapter covers how to efficiently count the 1 bits in an array with the most efficient version using the recently-introduced popcnt instruction. Another chapter covers using SSE instructions to create an efficient implementation of the Sobel filtering algorithm. The final high performance programming chapter discusses computing correlation between data in 2 arrays. There is an AVX implementation which achieves 20.5 GFLOPs on a single core of a Core i7 CPU. A companion web site, http: //www.rayseyfarth.com, has a collection of PDF slides which instructors can use for in-class presentations and source code for sample programs.
Linkers and Loaders
Author: John R. Levine
Publisher: Morgan Kaufmann
ISBN: 1558604960
Pages: 256
Year: 2000
View: 258
Read: 396
Whatever your programming language, whatever your platform, you probably tap into linker and loader functions all the time. But do you know how to use them to their greatest possible advantage? Only now, with the publication of Linkers & Loaders, is there an authoritative book devoted entirely to these deep-seated compile-time and run-time processes. The book begins with a detailed and comparative account of linking and loading that illustrates the differences among various compilers and operating systems. On top of this foundation, the author presents clear practical advice to help you create faster, cleaner code. You'll learn to avoid the pitfalls associated with Windows DLLs, take advantage of the space-saving, performance-improving techniques supported by many modern linkers, make the best use of the UNIX ELF library scheme, and much more. If you're serious about programming, you'll devour this unique guide to one of the field's least understood topics. Linkers & Loaders is also an ideal supplementary text for compiler and operating systems courses. *Includes a linker construction project written in Perl, with project files available for download. *Covers dynamic linking in Windows, UNIX, Linux, BeOS, and other operating systems. *Explains the Java linking model and how it figures in network applets and extensible Java code. *Helps you write more elegant and effective code, and build applications that compile, load, and run more efficiently.
Introduction to 64 Bit Assembly Programming for Linux and OS X
Author: Ray Seyfarth
Publisher: Createspace Independent Pub
ISBN: 1484921909
Pages: 270
Year: 2014-06-30
View: 1141
Read: 174
This is the third edition of this assembly language programming textbook introducing programmers to 64 bit Intel assembly language. The primary addition to the third edition is the discussion of the new version of the free integrated development environment, ebe, designed by the author specifically to meet the needs of assembly language programmers. The new ebe is a C++ program using the Qt library to implement a GUI environment consisting of a source window, a data window, a register, a floating point register window, a backtrace window, a console window, a terminal window and a project window along with 2 educational tools called the "toy box" and the "bit bucket." The source window includes a full-featured text editor with convenient controls for assembling, linking and debugging a program. The project facility allows a program to be built from C source code files and assembly source files. Assembly is performed automatically using the yasm assembler and linking is performed with ld or gcc. Debugging operates by transparently sending commands into the gdb debugger while automatically displaying registers and variables after each debugging step. Additional information about ebe can be found at http: //www.rayseyfarth.com. The second important addition is support for the OS X operating system. Assembly language is similar enough between the two systems to cover in a single book. The book discusses the differences between the systems. The book is intended as a first assembly language book for programmers experienced in high level programming in a language like C or C++. The assembly programming is performed using the yasm assembler automatically from the ebe IDE under the Linux operating system. The book primarily teaches how to write assembly code compatible with C programs. The reader will learn to call C functions from assembly language and to call assembly functions from C in addition to writing complete programs in assembly language. The gcc compiler is used internally to compile C programs. The book starts early emphasizing using ebe to debug programs, along with teaching equivalent commands using gdb. Being able to single-step assembly programs is critical in learning assembly programming. Ebe makes this far easier than using gdb directly. Highlights of the book include doing input/output programming using the Linux system calls and the C library, implementing data structures in assembly language and high performance assembly language programming. Early chapters of the book rely on using the debugger to observe program behavior. After a chapter on functions, the user is prepared to use printf and scanf from the C library to perform I/O. The chapter on data structures covers singly linked lists, doubly linked circular lists, hash tables and binary trees. Test programs are presented for all these data structures. There is a chapter on optimization techniques and 3 chapters on specific optimizations. One chapter covers how to efficiently count the 1 bits in an array with the most efficient version using the recently-introduced popcnt instruction. Another chapter covers using SSE instructions to create an efficient implementation of the Sobel filtering algorithm. The final high performance programming chapter discusses computing correlation between data in 2 arrays. There is an AVX implementation which achieves 20.5 GFLOPs on a single core of a Core i7 CPU. A companion web site, http: //www.rayseyfarth.com, has a collection of PDF slides which instructors can use for in-class presentations and source code for sample programs.