Artificial Intelligence Marketing And Predicting Consumer Choice Book PDF, EPUB Download & Read Online Free

Artificial Intelligence Marketing and Predicting Consumer Choice
Author: Steven Struhl
Publisher: Kogan Page Publishers
ISBN: 0749479566
Pages: 272
Year: 2017-04-03
View: 165
Read: 1012
The ability to predict consumer choice is a fundamental aspect to success for any business. In the context of artificial intelligence marketing, there are a wide array of predictive analytic techniques available to achieve this purpose, each with its own unique advantages and disadvantages. Artificial Intelligence Marketing and Predicting Consumer Choice serves to integrate these widely disparate approaches, and show the strengths, weaknesses, and best applications of each. It provides a bridge between the person who must apply or learn these problem-solving methods and the community of experts who do the actual analysis. It is also a practical and accessible guide to the many remarkable advances that have been recently made in this fascinating field. Online resources include bonus chapters on AI, ensembles and neural nets, and finishing experiments, plus single and multiple product simulators.
Can Apply Artificial Intelligence to Predict Consumer Behavior: In Any Business Environment ?
Author: Johnny Ch Lok
Publisher: Can Apply Artificial Intellige
ISBN: 1720180865
Pages: 362
Year: 2018-09-09
View: 1131
Read: 830
Prepare This book has these two research questions need to be answered? (1) Can apply (AI) learning machine predict consumer behaviors? (2) Can (AI) learning machine replace human marketing research method, e.g. survey or human psychological and micro and macro economic methods to predict consumer behaviors more accurate? Nowadays, many businessmen or marketing research professional hope to apply different methods to predict consumer behaviors in order to know what will be future market activities and market changes to help them to choose to implement what kinds of marketing strategies more accurately. The methods include economic environmental change prediction method, consumer individual psychological change prediction method, micro or macro behavioral economic environmental change prediction method, marketing environmental change prediction method etc. different kinds of methods which can be applied to predict how consumer behavioral changes to influence whose behavioral consumption to the manufacturer products sale within one to two years short term or three to five years middle term, even above five years long term business plans. Hence, if the product manufacturers can apply the most suitable consumer behavioral prediction method to predict how consumers' choice will be changed to influence their products sale easily. It will have more beneficial intangible and tangible advantages to achieve the their product easier sale aim to ensure their businesses' future market share to be increased more easier to their countries' choice target sale markets. Otherwise, if they applied the inaccurate consumer behavioral prediction methods to predict how their consumers' behavioral changes wrongly. Then, it will influence their market shares to be same level, even it will decrease their market shares, when their consumer behavioral prediction inaccurately. In my this book first part, I concentrate on indicate whether any artificial intelligence (AI) tools will be one kind of good consumer behavioral prediction method to be choose to apply to predict consumer behaviors. I shall indicate some examples, cases to give reasonable evidences to analyze whether (AI) tools will be one kind suitable tool to be applied to predict when and how consumer behavioral changes. If (AI) can be one kind tool to attempt to be applied to predict when and how consumer behavioral changes. Will it replace other kinds of methods to predict consumer behaviors? Does it have weaknesses to be applied to predict consumer behaviors, instead of strengths? Can it be applied to predict consumer behaviors depending on any situations of only some situation? Finally, I believe that any readers can find answers to answer above these questions in this book. In my this book second part, I shall explain why and how human can possible apply (AI) tool to predict consumer individual emotion. I shall indicate case studies to explain how consumer individual better or worse emotion how to influence whose consumption behavior in different situation. Finally, I shall indicate evidences to conclude how and why (AI) tool that can be used to predict consumer individual emotion and it will have direct relationship to influence consumption behavior, as well as how (AI) tool can assist businessmen to judge whether what reasons case the customer does not choose to buy its product, it is possible because the product high price factor, poor product quality or poor staff service performance or attitude etc. different factors to influence the consumer decides to choose to buy the other product consequently, when the (AI) tool can confirm consumer has good or bad emotion to judge what factors are the causes his decision making at the moment. Readers can understand why and how (AI) tool can be attempt to be applied to predict customer emotion and it can influence positive or negative consumption behavior to the product clearly in this part.
Introduction to Algorithmic Marketing
Author: Ilya Katsov
Publisher:
ISBN: 0692989048
Pages: 506
Year: 2017-12-02
View: 800
Read: 994
A comprehensive guide to advanced marketing automation for marketing strategists, data scientists, product managers, and software engineers. The book covers the main areas of marketing that require programmatic micro-decisioning - targeted promotions and advertisements, eCommerce search, recommendations, pricing, and assortment optimization.
Prediction Machines
Author: Ajay Agrawal, Joshua Gans, Avi Goldfarb
Publisher: Harvard Business Press
ISBN: 1633695689
Pages: 272
Year: 2018-04-17
View: 438
Read: 1096
"What does AI mean for your business? Read this book to find out." -- Hal Varian, Chief Economist, Google Artificial intelligence does the seemingly impossible, magically bringing machines to life--driving cars, trading stocks, and teaching children. But facing the sea change that AI will bring can be paralyzing. How should companies set strategies, governments design policies, and people plan their lives for a world so different from what we know? In the face of such uncertainty, many analysts either cower in fear or predict an impossibly sunny future. But in Prediction Machines, three eminent economists recast the rise of AI as a drop in the cost of prediction. With this single, masterful stroke, they lift the curtain on the AI-is-magic hype and show how basic tools from economics provide clarity about the AI revolution and a basis for action by CEOs, managers, policy makers, investors, and entrepreneurs. When AI is framed as cheap prediction, its extraordinary potential becomes clear: Prediction is at the heart of making decisions under uncertainty. Our businesses and personal lives are riddled with such decisions. Prediction tools increase productivity--operating machines, handling documents, communicating with customers. Uncertainty constrains strategy. Better prediction creates opportunities for new business structures and strategies to compete. Penetrating, fun, and always insightful and practical, Prediction Machines follows its inescapable logic to explain how to navigate the changes on the horizon. The impact of AI will be profound, but the economic framework for understanding it is surprisingly simple.
Artificial Intelligence and Consumer Behavior Relationship
Author: Johnny Ch Lok
Publisher: Artificial Intelligence and Company
ISBN: 1723773867
Pages: 378
Year: 2018-09-17
View: 239
Read: 698
Prepare This book has these two research questions need to be answered? (1)Can apply (AI) learning machine predict consumer behaviors? (2)Can (AI) learning machine replace human marketing research method, e.g. survey or human psychological and micro and macro economic methods to predict consumer behaviors more accurate? Nowadays, many businessmen or marketing research professional hope to apply different methods to predict consumer behaviors in order to know what will be future market activities and market changes to help them to choose to implement what kinds of marketing strategies more accurately. The methods include economic environmental change prediction method, consumer individual psychological change prediction method, micro or macro behavioral economic environmental change prediction method, marketing environmental change prediction method etc. different kinds of methods which can be applied to predict how consumer behavioral changes to influence whose behavioral consumption to the manufacturer products sale within one to two years short term or three to five years middle term, even above five years long term business plans. Hence, if the product manufacturers can apply the most suitable consumer behavioral prediction method to predict how consumers' choice will be changed to influence their products sale easily. It will have more beneficial intangible and tangible advantages to achieve the their product easier sale aim to ensure their businesses' future market share to be increased more easier to their countries' choice target sale markets. Otherwise, if they applied the inaccurate consumer behavioral prediction methods to predict how their consumers' behavioral changes wrongly. Then, it will influence their market shares to be same level, even it will decrease their market shares, when their consumer behavioral prediction inaccurately. In my this book first part, I concentrate on indicate whether any artificial intelligence (AI) tools will be one kind of good consumer behavioral prediction method to be choose to apply to predict consumer behaviors. I shall indicate some examples, cases to give reasonable evidences to analyze whether (AI) tools will be one kind suitable tool to be applied to predict when and how consumer behavioral changes. If (AI) can be one kind tool to attempt to be applied to predict when and how consumer behavioral changes. Will it replace other kinds of methods to predict consumer behaviors? Does it have weaknesses to be applied to predict consumer behaviors, instead of strengths? Can it be applied to predict consumer behaviors depending on any situations of only some situation? Finally, I believe that any readers can find answers to answer above these questions in this book. In my this book second part, I shall explain why and how human can possible apply (AI) tool to predict consumer individual emotion. I shall indicate case studies to explain how consumer individual better or worse emotion how to influence whose consumption behavior in different situation. Finally, I shall indicate evidences to conclude how and why (AI) tool that can be used to predict consumer individual emotion and it will have direct relationship to influence consumption behavior, as well as how (AI) tool can assist businessmen to judge whether what reasons case the customer does not choose to buy its product, it is possible because the product high price factor, poor product quality or poor staff service performance or attitude etc. different factors to influence the consumer decides to choose to buy the other product consequently, when the (AI) tool can confirm consumer has good or bad emotion to judge what factors are the causes his decision making at the moment. Readers can understand why and how (AI) tool can be attempt to be applied to predict customer emotion and it can influence positive or negative consumption behavior to the product clearly in this part.
Practical Text Analytics
Author: Steven Struhl
Publisher: Kogan Page
ISBN: 074947937X
Pages: 272
Year: 2016-03-28
View: 441
Read: 560
Bridging the gap between the marketer who must put text analytics to use and data analysis experts, Practical Text Analytics is an accessible guide to the many advances in text analytics. It explains the different approaches and methods, their uses, strengths, and weaknesses, in a way that is relevant to marketing professionals. Each chapter includes illustrations and charts, hints and tips, pointers on the tools and techniques, definitions, and case studies/examples. Consultant and researcher Steven Struhl presents the process of text analysis in ways that will help marketers clarify and organize the confusing array of methods, frame the right questions, and apply the results successfully to find meaning in any unstructured data and develop effective new marketing strategies.
Predictive Marketing
Author: Omer Artun, Dominique Levin
Publisher: John Wiley & Sons
ISBN: 1119037336
Pages: 272
Year: 2015-08-06
View: 704
Read: 1151
Make personalized marketing a reality with this practical guide to predictive analytics Predictive Marketing is a predictive analytics primer for organizations large and small, offering practical tips and actionable strategies for implementing more personalized marketing immediately. The marketing paradigm is changing, and this book provides a blueprint for navigating the transition from creative- to data-driven marketing, from one-size-fits-all to one-on-one, and from marketing campaigns to real-time customer experiences. You'll learn how to use machine-learning technologies to improve customer acquisition and customer growth, and how to identify and re-engage at-risk or lapsed customers by implementing an easy, automated approach to predictive analytics. Much more than just theory and testament to the power of personalized marketing, this book focuses on action, helping you understand and actually begin using this revolutionary approach to the customer experience. Predictive analytics can finally make personalized marketing a reality. For the first time, predictive marketing is accessible to all marketers, not just those at large corporations — in fact, many smaller organizations are leapfrogging their larger counterparts with innovative programs. This book shows you how to bring predictive analytics to your organization, with actionable guidance that get you started today. Implement predictive marketing at any size organization Deliver a more personalized marketing experience Automate predictive analytics with machine learning technology Base marketing decisions on concrete data rather than unproven ideas Marketers have long been talking about delivering personalized experiences across channels. All marketers want to deliver happiness, but most still employ a one-size-fits-all approach. Predictive Marketing provides the information and insight you need to lift your organization out of the campaign rut and into the rarefied atmosphere of a truly personalized customer experience.
Artificial Intelligence Marketing Development
Author: Johnny Ch Lok
Publisher: Createspace Independent Publishing Platform
ISBN: 1985571196
Pages: 52
Year: 2018-02-14
View: 1301
Read: 1265
In this book, I shall give actual data to predict what the future (AI) products development trend is. Giving my opinions to predict how (AI) consumers' choices are more absolutely. I shall concern travel, education, transportation, financial , hospital, administrative service etc. different job natures to indicate how to apply (AI) products to assist these industries more beneficial.
Marketing Data Science
Author: Thomas W. Miller
Publisher: FT Press
ISBN: 0133887340
Pages: 225
Year: 2015-05-02
View: 376
Read: 400
Now , a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications. Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis. Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.
Prediction Artificial Intelligence Marketing
Author: Johnny Ch LOK
Publisher:
ISBN: 1980290571
Pages: 50
Year: 2018-02-14
View: 828
Read: 188
In this book, I shall give actual data to predict what the future (AI) products development trend is. Giving my opinions to predict how (AI) consumers' choices are more absolutely. I shall concern travel, education, transportation, financial , hospital, administrative service etc. different job natures to indicate how to apply (AI) products to assist these industries more beneficial.
The Business Plan Workbook
Author: Colin Barrow, Paul Barrow, Robert Brown
Publisher: Kogan Page Publishers
ISBN: 0749481803
Pages: 376
Year: 2018-02-03
View: 1275
Read: 1318
One of the most important steps in launching or expanding a venture is the creation of a business plan. The absence of a written business plan can lead to failure for new businesses, and inhibit growth and development. Based on methodology developed at Cranfield School of Management, The Business Plan Workbook takes a practical approach to the topic of business planning. Perfect for those growing businesses, as well as a range of academic and professional courses, this title takes the reader step-by-step through each phase of the development of a business plan, from creating a competitive business strategy to its writing and presentation. With 29 corresponding assignments that each includes case studies such as Hotmail, Cobra Beer, IKEA and Amazon, actively engaging questions and worksheets, it will enable you to validate your business idea, brand your business, research your market, and raise finance. This new edition includes an additional assignment covering online content, key words, SEO, Social Media, traffic tracking, affiliate marketing and online advertising. With a range of fresh case studies including BrewDog, Chilango and Honest Burgers, this fully updated ninth edition of The Business Plan Workbook is an invaluable and comprehensive guide to all aspects of business planning. Online supporting resources for this book include lecture slides, test questions and answers, and a new guide to online courses, lectures and case studies.
Artificial Intelligence Predicts Consumer Behavioral Tool Business Journey
Author: Johnny Ch LOK
Publisher:
ISBN: 1983203386
Pages: 65
Year: 2018-06-18
View: 1050
Read: 289
Prepare This AI science fiction brings readers to image whether what are influenced by artificial intelligent big data gathering tool if it can be invented to replace human marketing research method to predict when, how and why consumer behaviors changes successfully. This book let readers to image themselve are such consumer behavior predictive professional how to apply AI tool to predict customer behavior changes for themselve example product industries in this consumer behavioral predictive journey. This book has these two research questions need to be answered?(1) Can apply (AI) learning machine predict consumer behaviors?(2) Can (AI) learning machine replace human marketing research method, e.g. survey or human psychological and micro and macro economic methods to predict consumer behaviors more accurate? Nowadays, many businessmen or marketing research professional hope to apply different methods to predict consumer behaviors in order to know what will be future market activities and market changes to help them to choose to implement what kinds of marketing strategies more accurately. The methods include economic environmental change prediction method, consumer individual psychological change prediction method, micro or macro behavioral economic environmental change prediction method, marketing environmental change prediction method etc. different kinds of methods which can be applied to predict how consumer behavioral changes to influence whose behavioral consumption to the manufacturer products sale within one to two years short term or three to five years middle term, even above five years long term business plans. Hence, if the product manufacturers can apply the most suitable consumer behavioral prediction method to predict how consumers' choice will be changed to influence their products sale easily. It will have more beneficial intangible and tangible advantages to achieve the their product easier sale aim to ensure their businesses' future market share to be increased more easier to their countries' choice target sale markets. Otherwise, if they applied the inaccurate consumer behavioral prediction methods to predict how their consumers' behavioral changes wrongly. Then, it will influence their market shares to be same level, even it will decrease their market shares, when their consumer behavioral prediction inaccurately. In my this book, I concentrate on indicate whether any artificial intelligence (AI) tools will be one kind of good consumer behavioral prediction method to be choose to apply to predict consumer behaviors. I shall indicate some examples, cases to give reasonable evidences to analyze whether (AI) tools will be one kind suitable tool to be applied to predict when and how consumer behavioral changes. If (AI) can be one kind tool to attempt to be applied to predict when and how consumer behavioral changes. Will it replace other kinds of methods to predict consumer behaviors? Does it have weaknesses to be applied to predict consumer behaviors, instead of strengths? Can it be applied to predict consumer behaviors depending on any situations of only some situation? Finally, I believe that any readers can find answers to answer above these questions in this book.
Artificial Intelligence Predicts Consumer Behavioral Tool
Author: Johnny Ch Lok
Publisher: Independently Published
ISBN: 198313015X
Pages: 64
Year: 2018-06-10
View: 1033
Read: 903
Prepare This book has these two research questions need to be answered? (1) Can apply (AI) learning machine predict consumer behaviors? (2) Can (AI) learning machine replace human marketing research method, e.g. survey or human psychological and micro and macro economic methods to predict consumer behaviors more accurate? Nowadays, many businessmen or marketing research professional hope to apply different methods to predict consumer behaviors in order to know what will be future market activities and market changes to help them to choose to implement what kinds of marketing strategies more accurately. The methods include economic environmental change prediction method, consumer individual psychological change prediction method, micro or macro behavioral economic environmental change prediction method, marketing environmental change prediction method etc. different kinds of methods which can be applied to predict how consumer behavioral changes to influence whose behavioral consumption to the manufacturer products sale within one to two years short term or three to five years middle term, even above five years long term business plans. Hence, if the product manufacturers can apply the most suitable consumer behavioral prediction method to predict how consumers' choice will be changed to influence their products sale easily. It will have more beneficial intangible and tangible advantages to achieve the their product easier sale aim to ensure their businesses' future market share to be increased more easier to their countries' choice target sale markets. Otherwise, if they applied the inaccurate consumer behavioral prediction methods to predict how their consumers' behavioral changes wrongly. Then, it will influence their market shares to be same level, even it will decrease their market shares, when their consumer behavioral prediction inaccurately. In my this book, I concentrate on indicate whether any artificial intelligence (AI) tools will be one kind of good consumer behavioral prediction method to be choose to apply to predict consumer behaviors. I shall indicate some examples, cases to give reasonable evidences to analyze whether (AI) tools will be one kind suitable tool to be applied to predict when and how consumer behavioral changes. If (AI) can be one kind tool to attempt to be applied to predict when and how consumer behavioral changes. Will it replace other kinds of methods to predict consumer behaviors? Does it have weaknesses to be applied to predict consumer behaviors, instead of strengths? Can it be applied to predict consumer behaviors depending on any situations of only some situation? Finally, I believe that any readers can find answers to answer above these questions in this book.
Advanced Customer Analytics
Author: Mike Grigsby
Publisher: Kogan Page Publishers
ISBN: 0749477164
Pages: 264
Year: 2016-10-03
View: 708
Read: 1192
Advanced Customer Analytics provides a clear guide to the specific analytical challenges faced by the retail sector. The book covers the nature and scale of data obtained in transactions, relative proximity to the consumer and the need to monitor customer behaviour across multiple channels. The book advocates a category management approach, taking into account the need to understand the consumer mindset through elasticity modelling and discount strategies, as well as targeted marketing and loyalty design. A practical, no-nonsense approach to complex scenarios is taken throughout, breaking down tasks into easily digestible steps. The use of a fictional retail analyst 'Scott' helps to provide accessible examples of practice. Advanced Customer Analytics does not skirt around the complexities of this subject but offers conceptual support to steer retail marketers towards making the right choices for analysing their data.
The Difference Between Artificial Intelligence and Psychological Method Predicts: Consumer Behavior
Author: Johnny Ch Lok
Publisher: Independently Published
ISBN: 1720160414
Pages: 174
Year: 2018-09-08
View: 865
Read: 772
This book has these two research questions need to be answered? (1) Can apply (AI) learning machine predict consumer behaviors? (2) Can (AI) learning machine replace human marketing research method, e.g. survey or human psychological and micro and macro economic methods to predict consumer behaviors more accurate? Nowadays, many businessmen or marketing research professional hope to apply different methods to predict consumer behaviors in order to know what will be future market activities and market changes to help them to choose to implement what kinds of marketing strategies more accurately. The methods include economic environmental change prediction method, consumer individual psychological change prediction method, micro or macro behavioral economic environmental change prediction method, marketing environmental change prediction method etc. different kinds of methods which can be applied to predict how consumer behavioral changes to influence whose behavioral consumption to the manufacturer products sale within one to two years short term or three to five years middle term, even above five years long term business plans. Hence, if the product manufacturers can apply the most suitable consumer behavioral prediction method to predict how consumers' choice will be changed to influence their products sale easily. It will have more beneficial intangible and tangible advantages to achieve the their product easier sale aim to ensure their businesses' future market share to be increased more easier to their countries' choice target sale markets. Otherwise, if they applied the inaccurate consumer behavioral prediction methods to predict how their consumers' behavioral changes wrongly. Then, it will influence their market shares to be same level, even it will decrease their market shares, when their consumer behavioral prediction inaccurately. In my this book first part, I concentrate on indicate whether any artificial intelligence (AI) tools will be one kind of good consumer behavioral prediction method to be choose to apply to predict consumer behaviors. I shall indicate some examples, cases to give reasonable evidences to analyze whether (AI) tools will be one kind suitable tool to be applied to predict when and how consumer behavioral changes. If (AI) can be one kind tool to attempt to be applied to predict when and how consumer behavioral changes. Will it replace other kinds of methods to predict consumer behaviors? Does it have weaknesses to be applied to predict consumer behaviors, instead of strengths? Can it be applied to predict consumer behaviors depending on any situations of only some situation? Finally, I believe that any readers can find answers to answer above these questions in this book. In my this book second part, I shall explain why and how human can possible apply (AI) tool to predict consumer individual emotion. I shall indicate case studies to explain how consumer individual better or worse emotion how to influence whose consumption behavior in different suitations. Finally, I shall indicate evidences to conclude how and why (AI) tool that can be used to predict consumer individual emotion and it will have direct relationship to influence consumption behavior, as well as how (AI) tool can assist businessmen to judge whether what reasons case the customer does not choose to buy its product, it is possible because the product high price factor, poor product quality or poor staff service performance or attitude etc. different factors to influence the consumer decides to choose to buy the other product consequently, when the (AI) tool can confirm consumer has good or bad emotion to judge what factors are the causes his decision making at the moment.